Effects of Micronutrients or Conditional Amino Acids on COVID-19 Related Outcomes: An Evidence Analysis Center Scoping Review

Mary Rozga, PhD, RDN, Feon W. Cheng, PhD, MPH, RDN, CHTS-CP, Lisa Moloney, MS, RDN, Deepa Handu, PhD, RD, LDN

PII: S2212-2672(20)30515-3

DOI: https://doi.org/10.1016/j.jand.2020.05.015

Reference: JAND 54877

To appear in: Journal of the Academy of Nutrition and Dietetics

Received Date: 13 May 2020

Accepted Date: 15 May 2020

Please cite this article as: Rozga M, Cheng FW, Moloney L, Handu D, Effects of Micronutrients or Conditional Amino Acids on COVID-19 Related Outcomes: An Evidence Analysis Center Scoping Review, *Journal of the Academy of Nutrition and Dietetics* (2020), doi: https://doi.org/10.1016/j.jand.2020.05.015.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2020 by the Academy of Nutrition and Dietetics.

Effects of Micronutrients or Conditional Amino Acids on COVID-19 Related Outcomes: An Evidence Analysis Center Scoping Review

Mary Rozga, PhD, RDN^{a*}; Feon W. Cheng, PhD, MPH, RDN, CHTS-CP^b; Lisa Moloney, MS, RDN^c; Deepa Handu, PhD, RD, LDN^d

^{a*}Corresponding author.

Keywords: Micronutrients; Conditional Amino Acids; COVID-19; Medical Nutrition Therapy; Nutrition Support

Word Count Abstract: 238

Word Count Manuscript: 2,177

Author Contributions: All authors wrote sections of the first draft, thoroughly edited the manuscript and approved the final draft.

Funding/Financial Disclosures: This work was supported by the Academy of Nutrition and Dietetics.

Conflict of Interest: Authors have no conflicts of interest to disclose.

^a Nutrition Researcher, Academy of Nutrition and Dietetics Evidence Analysis Center. 120 S. Riverside Plaza, Suite 2190; Chicago, Illinois 60606-6995; ; Phone: 312-899- 1758; email: <u>mrozga@eatright.org</u>

^b Nutrition Researcher, Academy of Nutrition and Dietetics Evidence Analysis Center. 120 S. Riverside Plaza, Suite 2190; Chicago, Illinois 60606-6995; ; Phone: 312-899- 1757; email: <u>fcheng@eatright.org</u>

^c Nutrition Researcher, Academy of Nutrition and Dietetics Evidence Analysis Center. 120 S. Riverside Plaza, Suite 2190; Chicago, Illinois 60606-6995; ; Phone: 312-899-4785; email: <u>lmoloney@eatright.org</u>

^d Senior Scientific Director, Academy of Nutrition and Dietetics Evidence Analysis Center. 120 S. Riverside Plaza, Suite 2190; Chicago, Illinois 60606-6995; Phone: 312-899-4704; email: <u>dhandu@eatright.org</u>

Effects of Micronutrients or Conditional Amino Acids on COVID-19 Related Outcomes: An Evidence Analysis Center Scoping Review

3 Abstract

Recent narrative reviews have described the potential efficacy of providing individuals infected 4 5 with COVID-19 with additional micronutrients to reduce disease severity. While there are 6 compelling reasons why providing additional micronutrients or conditional amino acids may affect COVID-19-related outcomes, evidence is lacking. The objective of this scoping review is 7 to explore and describe the literature examining the effect of providing additional micronutrients 8 9 or conditional amino acids (glutamine, arginine) in adults with conditions or infections similar to COVID-19 infection on COVID-19 related health outcomes. A literature search of the 10 MEDLINE database and hand-search of Cochrane Database of systematic reviews retrieved 11 1,423 unique studies, and eight studies were included in this scoping review. Four studies 12 examined a target population with ventilator-related pneumonia and acute respiratory distress 13 syndrome, while the other four studies included patients who were at risk for ventilator-14 associated pneumonia. Interventions included intravenous vitamin C, intramuscular vitamin D, 15 enteral and intramuscular vitamin E, enteral zinc sulfate, and oral and parenteral glutamine. In 16 six of the eight included studies, baseline status of the nutrient of interest was not reported and, 17 thus, it is uncertain how outcomes may vary in the context of nutrient deficiency or insufficiency 18 compared to sufficiency. In the absence of direct evidence examining efficacy of providing 19 additional micronutrients or conditional amino acids to standard care, registered dietitian 20 nutritionists (RDNs) must rely on clinical expertise, and indirect evidence to guide medical 21 22 nutrition therapy (MNT) for patients infected with COVID-19.

23 Introduction

The COVID-19 pandemic has resulted in immeasurable adverse health effects across the world. 24 25 Recent narrative reviews have described the potential efficacy of providing additional micronutrients to reduce disease severity in individuals infected with COVID-19.¹⁻³ Suspected 26 efficacy of providing additional micronutrients to patients in order to reduce disease severity is 27 based on known mechanisms of micronutrients, including in optimizing the immune system and 28 29 reducing inflammation, as well as results from trials with humans infected with other viruses and in animal models of coronavirus. These narratives describe compelling reasons why providing 30 micronutrients, particularly vitamins C and D, may treat underlying insufficiencies or 31 deficiencies to benefit immune function prior to and after contracting COVID-19 infection. 32 33 In addition to optimizing immune function, another key consideration when providing medical nutrition therapy (MNT) to critically ill patients infected with the COVID-19 virus is the 34 increased risk for malnutrition. Nutrition support is in high demand for critically ill patients 35 being treated in Intensive Care Units (ICUs) during the current pandemic.⁴⁻⁶ While conditional 36 amino acids are not essential in healthy individuals, needs are increased during critical illness, 37 and these amino acids become essential. While nutrition support provides essential nutrients, it is 38 possible that providing conditional amino acids, which become essential in the context of critical 39 care, above those provided in standard nutrition support may allow for increased capacity for 40 recovery and maintenance or improvement of nutritional status.⁷ However, evidence is lacking 41 regarding the effect of providing additional conditional amino acids in the context of critical 42 illness due to COVID-19 infection. 43

In order to provide evidence-based practice, it is important to determine the evidence available to 44 support nutrition interventions. In the absence of direct evidence to support nutrition 45 interventions for the population of interest, practitioners must depend upon their clinical 46 expertise and indirect evidence. While there is ample evidence to suggest that supplementing or 47 fortifying nutrition support with micronutrients or conditional amino acids may be beneficial for 48 COVID-19 patients, there is little evidence directly testing these interventions in this population. 49 Therefore, the objective of this scoping review is to explore and describe the literature examining 50 the effect of providing additional micronutrients or conditional amino acids (glutamine, arginine) 51 on COVID-19-related health outcomes in adults with conditions or infections similar to COVID-52 19 infection. 53

54

55 Methods

This scoping review followed the protocols developed by Arskey and O'Malley⁸ and refined by
Levac⁹ et al and the Joanna Briggs Institute.¹⁰ The protocol for this scoping review adheres to the
PRISMA scoping review checklist¹¹ and was registered on Open Science Framework
(https://osf.io/9rm6u/).¹²

60

61 *Eligibility Criteria*

62 This scoping review defined the research question and eligibility criteria according to the

63 Population-Concept-Context approach.¹⁰ The populations of interest were humans infected with

- 64 a type of coronavirus (COVID-19, SARS, MERS), with ARDS, or those at-risk-of or with
- ventilator-associated pneumonia, since findings in these populations may inform individuals

currently infected with the COVID-19 coronavirus. The concept of this scoping review is
provision of additional micronutrients or the conditional amino acids glutamine or arginine. The
context was left open to capture all potential articles examining populations of interest. There
were no limits on publication dates. Only articles published in English were included in this
scoping review due to resource constraints. Additional eligibility criteria can be found in Table
1.

72

73 Search Plan

MEDLINE (EBSCO) database was searched on April 21, 2020 to identify titles and abstracts 74 with both the population and concept of interest. Search terms for the coronavirus were adapted 75 76 from a recent search strategy developed by the National Institute for Health and Care Excellence for this project.¹³ Additional search terms included "micronutrient", "ascorbic acid", "vitamin 77 D", "zinc", "multivitamin", "glutamine" and "arginine". The only filter used was for the English 78 language. A detailed search plan can be found in **Appendix 1**. Relevant systematic and narrative 79 reviews as well as the Cochrane Database of Systematic Reviews were hand-searched for 80 potentially included studies not identified in the MEDLINE search. 81

82

83 Study Selection and Data Extraction

Title and abstract screening were conducted in two phases using Rayyan, an online software program.¹⁴ In the first phase, a reviewer (M.R.) excluded studies with animals or cells as the population of interest as well as studies that were not primary research studies or systematic reviews. Any remaining abstracts were reviewed by two independent reviewers. Full-texts of

potentially included articles were reviewed for eligibility by two reviewers (M.R. and F.W.C.), 88 and discrepancies were settled through consensus. Each stage of the review process was 89 documented in a PRISMA flow chart.¹⁵ 90 91 Data were extracted from included studies, including: bibliographic information; details on the target population including disease/illness status, ventilator status and age; details on the 92 93 intervention including the nutrient, dose, mode and duration; outcomes of interest reported and summary of study results. This data was extracted onto a standardized study characteristics table. 94 Studies with similar populations and/or interventions were grouped and described narratively. As 95 is customary for scoping reviews, no critical appraisal of study quality was conducted. 96

97

98 **Results**

99 There were 1,423 unique studies identified with the database search, full-texts of eleven studies 100 were examined for inclusion, and eight studies were included in this scoping review (**Figure** 101 1).¹⁶⁻²⁴ The majority of the studies identified in the initial search were excluded during 102 title/abstract screening. Primary reasons for exclusion were: animals or cell studies; human 103 studies did not examine a population of interest, and; studies were not primary research studies 104 (e.g., narrative reviews and commentaries).

105 Characteristics of the eight included studies are shown in **Table 2**. There were five randomized 106 controlled trials represented in six publications^{16,17,19,21-23} and three non-randomized controlled 107 studies,^{18,20,24} published between 1987²⁰ and 2019.¹⁶ The number of participants ranged from 108 14²⁰ to 186.²⁴ Although all studies included critically ill patients, the sample characteristics

109	differed slightly. For example, Lin et al included patients in burn shock resuscitation, ¹⁸ while
110	Kaya et al included ventilated patients in neurosurgical ICU. ¹⁷
111	Four studies focused on patients who had ventilator-related pneumonia and/or acute respiratory
112	distress syndrome, ^{16,19,20,23} and the remaining four studies included patients who were at risk for
113	ventilator-associated pneumonia. ^{17,18,22,24}
114	Study interventions were heterogeneous. Fowler et al ¹⁶ and Lin et al ¹⁸ examined the effect of
115	vitamin C or ascorbic acid via intravenous infusion and the remaining included studies
116	investigated other single nutrients delivered through various modes: glutamine orally ¹⁷ or
117	parenterally ²² ; vitamin D intramuscularly ¹⁹ ; vitamin E (d,1-alpha-tocopherylacertate) enterally ²⁰
118	or intramuscularly ²³ ; and zinc sulfate enterally. ²⁴ The duration of the intervention also varied
119	(Table 2).
120	Except for Lin et al ¹⁸ and Seeger et al, ²⁰ all other six studies had a comparison group. ^{16,17,19,22-24}
121	Among the eight included studies, reported outcomes included: organ failure, inflammatory and
122	vascular injury markers, pneumonia score, ventilator-related pneumonia, and mortality.
123	Five studies did not find any improvement in their reported outcomes. ^{16-18,20,22} In three studies
124	the authors reported a potential benefit of the intervention on outcomes: intramuscular vitamin D

125 on mortality,¹⁹ intramuscular vitamin E on Acute Physiology and Chronic Health Evaluation

126 (APACHE) score in patients with ARDS,²³ and zinc sulfate on the incidence of ventilator-

associated pneumonia in ventilated ICU patients.²⁴ In two studies, authors indicated deficiency of

the nutrient of interest at baseline,^{16,19} but baseline status of the intervention nutrient was not

129 described in the remaining studies.

130 Discussion

131 This scoping review included eight unique studies examining the effect of providing additional 132 micronutrients or conditional amino acids on COVID-19-related health outcomes in individuals 133 with ARDS and in individuals with or at risk for ventilator-associated pneumonia. Although the search plan included individuals infected with a form of coronavirus (COVID-19, SARS, 134 135 MERS), there were no studies identified with these target populations. Overall, sparse evidence 136 of heterogeneous interventions described some benefit of intramuscular vitamins D and E, and zinc via a nasogastric tube on coronavirus-related outcomes, but findings should be interpreted 137 138 with caution since this scoping review did not critically analyze risk of bias or certainty of 139 evidence. In addition, most studies did not report the baseline status of the nutrients being supplemented. Thus, it is unclear if results would have been different if participants were 140 141 exclusively insufficient/deficient vs sufficient. It is possible that treating baseline deficiency may result in improved outcomes,²⁵ while providing additional nutrients to a sufficient individual 142 would result in no effect. Hence, further investigation is warranted. 143 There has been considerable interest in the efficacy of micronutrient therapy to reduce the 144 severity and symptoms of COVID-19 infection, particularly in the context of critical illness.¹⁻ 145 ^{3,26,27} Recent reviews include comprehensive discussion of the potential effects of providing 146 additional micronutrients to individuals with COVID-19,¹ particularly vitamin $C^{3,28}$ and vitamin 147 $D^{2,26,27}$. In these reviews, the authors provide compelling logic that patients infected with 148 COVID-19 or with comparable conditions could benefit from addition of these nutrients. 149 Authors describe biological functions of these micronutrients and discuss how supplementation 150 has been effective in treating other viruses such as the common cold or influenza, particularly in 151 the context of insufficiency or deficiency. Authors also provide evidence describing efficacy of 152

153	providing micronutrients in the context of animal models of coronavirus. However, human trials
154	examining efficacy of providing micronutrients and conditional amino acids were lacking, which
155	was supported by the dearth of evidence discovered in this scoping review.
156	There is minimal available evidence to guide nutrition care for RDNs working with patients
157	infected with COVID-19. Indeed, there is little evidence to guide practice for individuals with
158	similar conditions, including alternative versions of the coronavirus, ARDS or ventilator-
159	associated pneumonia. In these circumstances, it is critical for RDNs to rely on their scientific
160	training, clinical expertise, and the nutrition care process to determine if a patient is deficient in
161	an essential nutrient and if treating the respective deficiency is a priority. RDNs can also
162	extrapolate evidence from populations presenting with similar signs and symptoms, such as those
163	with critical illness and/or on mechanical ventilation, to inform practice for individuals with
164	COVID-19 infections. RDNs should consider how baseline nutrient status may affect outcomes,
165	since treating a deficiency or insufficiency may result in improved outcomes, while providing
166	nutrients above meeting needs may have no effect.
167	In the current COVID-19 crisis, it is not possible to wait until clinical trials are published on each
168	intervention delivered before implementing the intervention with a patient, as would ideally be
169	the case in standard care. Instead, RDNs must use ingenuity and innovation and work as part of a
170	multi-disciplinary team to determine priorities and risk-benefit ratio of interventions when
171	collaborating to manage health condition in adults infected with COVID-19.
172	

173 COVID-19 Research Moving Forward

174	In a recent consensus report, the Expert Group on Clinical Treatment of New Corona Virus
175	Disease in Shanghai described that high-dose intravenous vitamin C treatment is recommended
176	for patients with light or general symptoms ²⁹ to prevent and control cytokine storms. Several
177	trials have been registered examining the effect of providing antioxidants, ³⁰ vitamin C, ³¹⁻³⁵ and
178	vitamin D. ³⁶⁻³⁸ Thus, while there is no research to support evidence-based recommendations at
179	this time, evidence to inform provision of additional micronutrients for individuals with COVID-
180	19 infections may be available moving forward. There were no registered trials found directly
181	examining the effects of glutamine or arginine.
182	In order to provide evidence-based practice for RDNs, it is crucial that RDNs participate in
182 183	In order to provide evidence-based practice for RDNs, it is crucial that RDNs participate in COVID-19 related research when possible. In addition to participating in formal research studies,
182 183 184	In order to provide evidence-based practice for RDNs, it is crucial that RDNs participate in COVID-19 related research when possible. In addition to participating in formal research studies, RDNs can contribute their experiences in delivering MNT to this population by documenting
182 183 184 185	In order to provide evidence-based practice for RDNs, it is crucial that RDNs participate in COVID-19 related research when possible. In addition to participating in formal research studies, RDNs can contribute their experiences in delivering MNT to this population by documenting care and outcomes in the Academy of Nutrition and Dietetics Health Informatics Infrastructure
182 183 184 185 186	In order to provide evidence-based practice for RDNs, it is crucial that RDNs participate in COVID-19 related research when possible. In addition to participating in formal research studies, RDNs can contribute their experiences in delivering MNT to this population by documenting care and outcomes in the Academy of Nutrition and Dietetics Health Informatics Infrastructure (ANDHII). ³⁹ RDNs working with COVID-19 patients are essential workers and are likely
182 183 184 185 186 187	In order to provide evidence-based practice for RDNs, it is crucial that RDNs participate in COVID-19 related research when possible. In addition to participating in formal research studies, RDNs can contribute their experiences in delivering MNT to this population by documenting care and outcomes in the Academy of Nutrition and Dietetics Health Informatics Infrastructure (ANDHII). ³⁹ RDNs working with COVID-19 patients are essential workers and are likely stressed for time. However, any documentation of current practices can help contribute to a

189

190 Strengths and Limitations

This scoping review followed a rigorous process and examined the availability of interventions of potential utility in populations that may be comparable and applicable to the COVID-19 infected population. A limitation of this scoping review included the lack of evidence available in target populations and lack of documentation of baseline nutrient status of participants in included articles. Moving forward, authors of scoping and systematic reviews examining

196 potential efficacy of interventions in patients with COVID-19 infection should consider 197 including a broader population base, including those with critical illness or respiratory infections, in order to identify evidence that can be extrapolated to the population of interest. Another 198 199 limitation of this scoping review was searching the MEDLINE database and Cochrane Database of Systematic Reviews only in the interest of providing information to practitioners in a rapid 200 manner. However, studies cited in the included articles or in any relevant narrative reviews were 201 evaluated for inclusion. This scoping review did not cover all nutrients that may be beneficial to 202 COVID-19 patients, including probiotics or oral nutrition supplements. 203

204

205 Conclusion

Individuals infected with COVID-19 may have baseline nutrient deficiencies and/or increased nutrient needs due to COVID-19 pathology. Current reviews and registered trials discuss the potential utility of providing additional micronutrients and glutamine in contexts that may apply to those infected with COVID-19. However, evidence in human subjects is very limited and it is unclear if results may vary according to baseline nutrient status. RDNs must work with the multidisciplinary team and rely on clinical expertise and indirect evidence to guide MNT for patients infected with COVID-19 in order to reduce adverse effects from COVID-19 infection.

- 213 References
- Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic
 review. *J Med Virol.* 2020;92(5):479-490.
- 216 2. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation
- 217 Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. *Nutrients*.
- 218 2020;12(4).
- 2193.Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat
- coronavirus disease 2019 (COVID-19)? *Med Drug Discov.* 2020;5:100028.
- 4. Laviano A, Koverech A, Zanetti M. Nutrition support in the time of SARS-CoV-2
- 222 (COVID-19). *Nutrition*. 2020:110834.
- 5. Martindale R PJ, Taylor B, Warren M, McClave S. Nutrition Therapy in the Patient with
- 224 COVID-19 Disease Requiring ICU Care. American Society for Parenteral and Enteral
- 225 Nutrition, Society of Critical Care Medicine. Available at:
- 226 https://www.sccm.org/getattachment/Disaster/Nutrition-Therapy-COVID-19-SCCM-
- 227 <u>ASPEN.pdf?lang=en-US</u>. Accessed: April 1, 2020 2020.
- 228 6. Iyer R, Bansal A. What do we know about optimal nutritional strategies in children with
- pediatric acute respiratory distress syndrome? *Ann Transl Med.* 2019;7(19):510.
- 230 7. Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired
- Amino Acid Deficiencies: A Focus on Arginine and Glutamine. *Nutr Clin Pract.*
- 232 2017;32(1_suppl):30s-47s.
- 233 8. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. *Int J Soc.*
- 234 *Res Methodol: Theory & Prac.* 2005: 8(1):19-32.

235	9.	Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology.
236		Implement Sci. 2010;5:69.
237	10.	Peters MDJ GCMP, Baldini Soares C, Khalil H, Parker D. Chapter 11: Scoping Reviews
238		(2020 version). In: Joanna Briggs Institute Reviewer's Manual, JBI, 20202017.
239	11.	Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-
240		ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-473.
241	12.	Rozga M. The Effect of Micronutrient and Single Amino Acid Supplementation on
242		Coronavirus-related Outcomes: A Scoping Review. Open Science Framework.
243		osf.io/9rm6u. Published 2020. Accessed April 24, 2020.
244	13.	The National Institute for Health and Care Excellence (NICE). Interim process and
245		methods for developing rapid guidelines on COVID-19, 7 Appendix: search strategy for
246		Medline (Ovid Platform). https://www.nice.org.uk/process/pmg35/chapter/appendix-
247		search-strategy-for-medline-ovid-platform. Published 2020. Accessed April 25, 2020.
248	14.	Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app
249		for systematic reviews. Syst Rev. 2016;5(1):210.
250	15.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic
251		reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006-
252		1012.
253	16.	Fowler AA, 3rd, Truwit JD, Hite RD, et al. Effect of Vitamin C Infusion on Organ
254		Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and
255		Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA.
256		2019;322(13):1261-1270.

Longerol Duo encorf
IOURNAL PRE-DROOL

257	17.	Kaya H, Turan Y, Tunalı Y, et al. Effects of oral care with glutamine in preventing
258		ventilator-associated pneumonia in neurosurgical intensive care unit patients. Appl Nurse
259		<i>Res.</i> 2017;33:10-14.
260	18.	Lin J, Falwell S, Greenhalgh D, Palmieri T, Sen S. High-Dose Ascorbic Acid for Burn
261		Shock Resuscitation May Not Improve Outcomes. Burn Care Res. 2018;39(5):708-712.
262	19.	Miroliaee AE, Salamzadeh J, Shokouhi S, Sahraei Z. The study of vitamin D
263		administration effect on CRP and Interleukin-6 as prognostic biomarkers of ventilator
264		associated pneumonia. J Crit Care. 2018;44:300-305.
265	20.	Seeger W, Ziegler A, Wolf HR. Serum alpha-tocopherol levels after high-dose enteral
266		vitamin E administration in patients with acute respiratory failure. Intensive Care Med.
267		1987;13(6):395-400.
268	21.	Miroliaee AE, Salamzadeh J, Shokouhi S, et al. Effect of Vitamin D Supplementation on
269		Procalcitonin as Prognostic Biomarker in Patients with Ventilator Associated Pneumonia
270		Complicated with Vitamin D Deficiency. Iran J Pharm Res. 2017;16(3):1254-1263.
271	22.	Aydogmus MT, Tomak Y, Tekin M, Kati I, Huseyinoglu U. Glutamine supplemented
272		parenteral nutrition to prevent ventilator-associated pneumonia in the intensive care unit.
273		Balkan Med J. 2012;29(4):414-418.
274	23.	Hajimahmoodi M, Mojtahedzadeh M, GhaffarNatanzi N, et al. Effects of vitamin E
275		administration on APACHE II Score in ARDS patients. DARU: J of Pharmaceutical Sci.
276		2009: 17(1):24-28.
277	24.	Hasanzadeh Kiabi F, Alipour A, Darvishi-Khezri H, Aliasgharian A, Emami Zeydi A.
278		Zinc Supplementation in Adult Mechanically Ventilated Trauma Patients is Associated

279		with Decreased Occurrence of Ventilator-associated Pneumonia: A Secondary Analysis
280		of a Prospective, Observational Study. Indian J Crit Care Med. 2017;21(1):34-39.
281	25.	Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2
282		infection? Med Drug Discov. 2020:100041.
283	26.	Weng H, Li J-G, Mao Z, Zeng X-T. Randomised trials of vitamin D 3 for critically ill
284		patients in adults: systematic review and meta-analysis with trial sequential analysis.
285		Intensive Care Med. 2017;43(2):277-278.
286	27.	Molloy EJ, Murphy N. Vitamin D, Covid-19 and Children. Ir Med J. 2020;113(4):64.
287	28.	Boretti A, Banik BK. Intravenous Vitamin C for reduction of cytokines storm in Acute
288		Respiratory Distress Syndrome. PharmaNutrition. 2020:100190.
289	29.	Shanghai Expert Group on Clinical Treatment of New Coronavirus Diseases. Expert
290		Consensus on Comprehensive Treatment of Cornoavirus Diseases in Shanghai in .2019
291		comprehensive treatment of coronavirus disease expert consensus China Journal of
292		Infectious Diseases. 2020:38. DOI:10.3760/cma.j.issn.1000-6680.2020.0016.
293	30.	ClinicalTrials.gov [Internet]. Anti-inflammatory/Antioxidant Oral Nutrition
294		Supplementation in COVID-19 (ONSCOVID19); NCT04323228. National Library of
295		Medicine (US). https://clinicaltrials.gov/ct2/show/NCT04323228. Published 2020.
296		Accessed April 28, 2020.
297	31.	ClinicalTrials.gov [Internet]. Early Infusion of Vitamin C for Treatment of Novel
298		COVID-19 Acute Lung Injury (EVICT-CORONA-ALI); NCT04344184. National
299		Library of Medicine (US). <u>https://clinicaltrials.gov/ct2/show/NCT04344184</u> . Published

300 2020. Accessed April 28, 2020.

301	32.	ClinicalTrials.gov [Internet]. Administration of Intravenous Vitamin C in Novel
302		Coronavirus Infection (COVID-19) and Decreased Oxygenation (AVoCaDO);
303		NCT04357782. National Library of Medicine (US).
304		https://clinicaltrials.gov/ct2/show/NCT04357782. Published 2020. Accessed April 28,
305		2020.
306	33.	ClinicalTrials.gov [Internet]. Pharmacologic Ascorbic Acid as an Activator of
307		Lymphocyte Signaling for COVID-19 Treatment; NCT04363216. National Library of
308		Medicine (US). https://clinicaltrials.gov/ct2/show/NCT04363216. Published 2020.
309		Accessed April 28, 2020.
310	34.	ClinicalTrials.gov [Internet]. Use of Ascorbic Acid in Patients With COVID 19;
311		NCT04323514. National Library of Medicine (US).
312		https://clinicaltrials.gov/ct2/show/NCT04323514. Published 2020. Accessed April 28,
313		2020.
314	35.	ClinicalTrials.gov [Internet]. Vitamin C Infusion for the Treatment of Severe 2019-nCoV
315		Infected Pneumonia; NCT04264533. National Library of Medicine (US).
316		https://clinicaltrials.gov/ct2/show/NCT04264533. Published 2020. Accessed April 28,
317		2020.
318	36.	ClinicalTrials.gov [Internet]. Vitamin D on Prevention and Treatment of COVID-19
319		(COVITD-19); NCT04334005. National Library of Medicine (US).
320		https://clinicaltrials.gov/ct2/show/NCT04334005. Published 2020. Accessed April 28,
321		2020.
322	37.	ClinicalTrials.gov [Internet]. Impact of Zinc and Vitamin D3 Supplementation on the
323		Survival of Aged Patients Infected With COVID-19 (ZnD3-CoVici); NCT04351490.

- 324 National Library of Medicine (US). <u>https://clinicaltrials.gov/ct2/show/NCT04351490</u>.
- Published 2020. Accessed April 28, 2020.
- 326 38. ClinicalTrials.gov [Internet]. COvid-19 and Vitamin D Supplementation: a Multicenter
- 327 Randomized Controlled Trial of High Dose Versus Standard Dose Vitamin D3 in High-
- risk COVID-19 Patients (CoVitTrial); NCT04344041. National Library of Medicine
- 329 (US). <u>https://clinicaltrials.gov/ct2/show/NCT04344041</u>. Published 2020. Accessed April
 330 28, 2020.
- 331 39. Academy of Nutrition and Dietetics. ANDHII. Academy of Nutrition and Dietetics.
- 332 <u>https://www.eatrightpro.org/research/projects-tools-and-initiatives/andhii</u>. Accessed

Journalt

333 2020, April 28.

334

Table 1. Eligibility Criteria for a Scoping Review Examining the Effect of Providing Micronutrients or Conditional Amino Acids in COVID-19-Related Conditions on COVID-19-Related Outcomes

Category	Inclusion Criteria	Exclusion Criteria
Study Type	Peer-reviewed literature	Grey literature
Population	Individuals with suspected or confirmed	Individuals with no suspected or
	viral infections related to the	confirmed viral infections related to
	coronavirus (COVID-19, SARS,	the coronavirus (COVID-19, SARS,
	MERS) or acute respiratory disease	MERS) or acute respiratory disease
	(ARDS) or who are at-risk-for or with	(ARDS) or who are not at-risk-for or
	ventilator-associated pneumonia	with ventilator-associated pneumonia
	X	Newborn/preterm human infants
	Human	Animal studies; cell/in vitro studies
Intervention	Vitamins and mineral supplements,	Does not examine the effect of
	including vitamins A, B, C, D, E, zinc,	specified nutrient
	colloidal silver, Multivitamin	
		Herbal supplements
	Single amino acids: glutamine, arginine	
Comparison	No limits	No limits
Outcomes	Mortality	Outcomes that are not Coronavirus- or
	Quality of Life (QoL)	Nutrition-Related
	Development of COVID-19 or	

	ventilator-associated pneumonia	
	Hospital Admission	
	Intubation	
	Days on Ventilator	
	Length of stay (LOS)	
	Symptom severity	C
	Nutrition/BMI Status	Ó
	Other Coronavirus- and Nutrition-	
	Related Outcomes	2
Setting	No limits	No limits
Sample Size	No limits	No limits
Study	Intervention and observational primary	Narrative reviews, commentary,
Designs	studies	editorials, letters to the editor,
		conference abstracts
	Systematic review and meta-analyses	
Year Range	No limits	No limits
Language	English	Non-English

Study	Population	Intervention	Comparison Group	Outcomes Reported	Major Results	
Vitamin C						
Fowler et al 2019 ¹⁴ RCT PMID 31573637	N = 167 ICU patients with sepsis and acute respiratory distress syndrome Plasma ascorbate levels at baseline were marginally deficient in both groups Mean ±SD Age: 54.8 ± 16.7	Nutrient: Vitamin C Dose: 50mg/kg in dextrose 5% in water Mode: Intravenous infusion Duration: Every 6 hours for 96 hours	Placebo (dextrose 5% in water only)	Organ failure (modified Sequential Organ Failure Assessment score), C-reactive protein levels, thrombomodulin levels	Compared to placebo, vitamin C did not significantly improve reported outcomes.	
Lin et al 2018 ¹⁶ Retrospective case- control PMID 29931212	N=80 Patients in burn shock resuscitation Baseline vitamin C status not reported Mean ±SD Age: 41±15 (intervention group) and 42.4±17	Nutrient: high dose ascorbic acid Dose: started at a dose of 66 mg/kg/hr Mode: Intravenous infusion Duration: mean time 4:01 ± 15	No treatment	Ventilator- associated pneumonia, mortality	There were no significant differences in the incidence of ventilator- associated pneumonia or mortality between the two groups.	

Table 2. Study Characteristics and Major Results for Studies Included in a Scoping Review Examining Efficacy of Providing Additional Micronutrients or Conditional Amino Acids on Coronavirus-Related Outcomes

	(comparison group)	hours				
Vitamin D						
Miroliaee et al 2017 ¹⁹ , 2018 ¹⁷ RCT PMID 29248753 29201115	N=49 Patients with Ventilator-related pneumonia and vitamin D deficiency Mean ±SD Age: 57.83±18.84 (intervention group) and 56.45±20.70 (comparison group)	Nutrient: Vitamin D Dose: 300,000 Units Mode: intramuscular Duration: N/A	Placebo	IL-6, CRP, CPIS score (pneumonia score), sequential organ failure assessment (SOFA) score, mortality	Compared to placebo, vitamin D group had significantly lower IL-6 levels and mortality, but not CRP level and SOFA or CPIS score.	
Vitamin E						
Hajimahmoodi et al 2009 ²¹ RCT No PMID	N = 20 ICU patients with acute respiratory distress syndrome Vitamin E status at baseline was not reported Mean ±SD Age: 51.2 ± 6.41	Nutrient: Vitamin E (600 IU/day) Mode: Intramuscular Duration: 3 days	Placebo (normal saline)	Acute Physiology and Chronic Health Evaluation (APACHE) II score	Vitamin E appeared to be beneficial in decreasing APACHE II score (significant changes in APACHE II in the intervention group).	

Seeger et al 1987 ¹⁸	N=14	Nutrient: Vitamin	No comparison	Mortality	No difference in
	Vantilated and	E (d,1-alpha-	group		mortality according
	intubated Acute	tocopherylacertate)			to the increase in
Before-after Study PMID 3117857	intubated Acute Respiratory Failure patients in ICU Vitamin E status at baseline was not reported Participant ages not reported	Dose: 3 gram/day Mode: Enteral (liquid oil directly in gastric tube in 6 doses) Duration: 10 days or if mechanical ventilation is not needed before 10 days			plasma tocopherols from the intervention
Zinc					
	N= 186	Nutrient: Zinc	No zinc sulfate	Occurrence of	Patients receiving
Hasanzadeh et al 2017 ²² Prospective Cohort Study	Adult mechanically ventilated trauma patients in the ICU Zinc status at	sulfate Dosage: 60- 90mg/day Mode: Nasogastric		ventilator- associated pneumonia measured with Clinical Pulmonary	zinc sulfate had a smaller hazard of progression to ventilator associated
PMID 28197049	baseline was not reported Zinc 24.4% <30 years	tube Duration: 1 year		Infection Score	pneumonia

	51.2% 30-65 years				
	24.4% >65 years				
	No zinc			5	
	21.2% < 30 years			D	
	50% 30-65 years		S, O		
	28.8% >65 years		Q`		
Glutamine					
Aydoğmuş et al 2012 ²⁰ RCT PMID 25207045	N=40 in glutamine and comparison groups Patients on mechanical ventilator support for at least 7 days in the ICU Mean ±SD Age: Non- Glutamine group: 45 ±18.2 years Glutamine group: 36.35 ±16.37 years	Nutrient: Glutamine Dose: 40 g/day Mode: TPN Duration: 7 days	TPN without glutamine	Development of ventilator- associated pneumonia, CRP	There was no difference development of ventilator associated pneumonia or CRP levels between groups.
Kaya et al 2016 ¹⁵	N=88	Nutrient:	Oral care with 2% chlorhexidine	Ventilator-related	No difference between groups at
Kaya et al 2016 ¹⁵	the ICU Mean \pm SD Age: Non- Glutamine group: 45 \pm 18.2 years Glutamine group: 36.35 \pm 16.37 years N=88	Nutrient:	Oral care with 2% chlorhexidine	Ventilator-related pneumonia	groups. No difference between groups

	Ventilated patients	Glutamine	gluconate solution	measured with	day 1, 3 or 5
RCT	in neurosurgical	Concentration: 5%		Clinical Infection	(p>0.05)
	ICU; expected to be			Score (chest x-rays;	
	ventilated at least 5	Mode: Oral care		endotracheal	
PMID 28096000	days	Duration: 5 days		aspirate cultures),	
				Acute	
				APACHE II score	
	Mean ±SD Age: 48.57±17.36				

APACHE= Acute Physiology and Chronic Health Evaluation ; CPIS= Clinical Pulmonary Infection Score; CRP= C-Reactive Protein; ICU= Intensive Care Unit; IL-6= Interleukin 6; RCT= Randomized Controlled Trial; SD= Standard Deviation; TPN= total parenteral nutrition

Included

Appendix 1. MEDLINE search plan for scoping review examining efficacy of providing additional micronutrients and conditional amino acids on COVID-19 related outcomes

Date Searched: April 21, 2020

Limits: English language

#	Query	
S21	S10 AND S20	
S20	S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19	×
S19	(MH "Glutamine+") OR (MH "Alanine+") OR (MH "Arginine+")	, OO.
S18	colloidal silver	0
S17	(MH "Zinc+")	
S16	(MH "Vitamin E+")	0
S15	(MH "Vitamin D+")	
S14	(MH "Ascorbic Acid+")	
S13	(MH "Vitamin B 12+") OR (MH "Vitamin B 6+") OR (MH "Thiamine+") OR (MH "Vitamin B Complex")	
S12	(MH "Vitamin A+") OR (MH "beta Carotene")	
S11	(MH "Micronutrients+")	
S10	S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9	
S9	(MH "Respiratory Distress Syndrome, Adult")	
S8	(MH "Pneumonia, Ventilator- Associated")	
S7	(MH "Middle East Respiratory Syndrome Coronavirus")	
S6	(MH "Severe Acute Respiratory Syndrome") OR (MH "SARS Virus")	

S5	((outbreak* or wildlife* or pandemic* or epidemic*) adj1 (China* or Chinese* or Huanan*))	
S4	(((respiratory* adj2 (symptom* or disease* or illness* or condition*)) or "seafood market*" or "food market*") adj10 (Wuhan* or Hubei* or China* or Chinese* or Huanan*))	
S3	((corona* or corono*) adj1 (virus* or viral* or virinae*))	C
S2	(coronavirus* or coronovirus* or coronavirinae* or Coronavirus* or Coronovirus* or Wuhan* or Hubei* or Huanan or "2019-nCoV" or 2019nCoV or nCoV2019 or "nCoV- 2019" or "COVID-19" or COVID19 or "CORVID-19" or CORVID19 or "WN-CoV" or WNCoV or "HCoV- 19" or HCoV19 or CoV or "2019 novel*" or Ncov or "n-cov" or "SARS-CoV-2" or "SARSCoV-2" or "SARSCoV2" or "SARS-CoV2" or "SARSCov19 or "SARS-CoV2" or "SARSCov19 or "SARS-Cov19" or "SARSCov-19" or Ncorona* or Ncorono* or NcovWuhan* or NcovHubei* or NcovChina* or NcovChinese*)	s. Prool
S1	(MH "Coronavirus Infections+") OR (MH "Coronavirus+")	