Pediatric Weight Management

Pediatrics and Physical Activity

Citation:

O'Loughlin J, Gray-Donald K, Paradis G, Meshefedjian G  One- and two-year predictors of excess weight gain among elementary schoolchildren in multiethnic, low-income, inner city neighborhoods.  American Journal of Epidemiology 2000; 152: 739-746

PubMed ID: 11052551
 
Study Design:
Longitudinal
Class:
- Click here for explanation of classification scheme.
Quality Rating:
Positive POSITIVE: See Quality Criteria Checklist below.
Research Purpose:
To identify 1- and 2- year predictors of excess weight gain among preadolescents.
Inclusion Criteria:

None specified

Exclusion Criteria:

None specified

Description of Study Protocol:

Data were collected each year in two visits to each school. Height and weight were assessed on the first visit. The second visit, students completed an in-class questionnaire administered in French or English. They included data on age, gender family composition, language spoken number of years lived in Canada, country of birth for participant, mother, and father, parents’ employment status, as well as smoking status, level of PA and diet.

Data Collection Summary:

Independent:

  • Physical activity – Frequency  (7 day recall)
  • Physical activity – participation in school sports (1 item)
  • Physical activity – participation in organized sports outside school (2 items)
  • Sedentary behavior – “on school days, usually I watch TV…(how many days), and “usually I play gameboy or video games… ( how many times per week)
  • Diet – 34 item food frequency

Dependent: 

  • BMI
  • Triceps skin fold
  • 1- year change in BMI
  • 2- Year change in BMI

Confounders: 

  • Age at baseline
  • Gender
  • Grade
  • Cohort year

Statistical Analyses:

  • One and 2-year predictors of excess weight gain were identified in multiple logistic regression analysis in which the DV was whether or not the subjects was in the highest age- and gender specific decile of change in BMI. 
  • Potential  predictors investigated included SES, level of PA, frequency of TV viewing, frequency of video game playing and diet indicators.  All potential predictors associated with the DV in univariate analyses were entered in to a multivariate model.
  • Analyses are done on boys and girls separately. 
  • All analyses are controlled for age at baseline, grad and year of cohort.
  • Odds ratios are also computed.
Description of Actual Data Sample:
  • 4th and 5th grade students from 16 elementary schools.
  • 2318 children ages 9-12 with baseline and 1-year follow-up data and 633 children aged 9-11 with baseline and 2-year follow-up data.
Summary of Results:
  • Students in the top decile of change in BMI increased 2-2.5 BMI units over 1-year compared with 1 BMI unit or less among those at the 50th %tile. Over 2 years, students in the top decile increased 3-4 BMI unites compared with 1-2 BMI units among those at the top.
  • Baseline BMI was a strong predictor of excess weight gain in both genders.
  • Odds Ratio for one year follow up, baseline BMI of 90th percentile or more was 2.8 among boys and 2.4 among girls.
  • Level of PA as measured in the 7-day recall was associated with excess weight gain in boys in the 2-year follow-up.
  • Not participating in organized sports outside school was associated with excess weight gain in girls at 1-year follow-up. And in boys at 2-year follow-up.
  • Playing video games everyday was related to excess weight gain in girls in the 1-year follow-up (OR = 2.4).
  • There were no strong or consistent patterns of associations in either boys or girls for family origin, diet indicators, school sports team or television viewing.
  • Baseline BMI was the only consistent independent predictor of excess weight gain in all four multivariate models. Boys and girls who were obese at baseline were 2 to 3 times more likely to gain excess weight gain.
Author Conclusion:
  • The major finding of this study was that the main predictors of excess weight for height gain included high initial BMI and low levels of PA. Specifically, 3 of 5 indicators of PA and sedentary behavior were independently associated with excess weight gain.
  • In girls, the effects of PA were apparent after 1 but not 2, year follow-up, whereas in boys they became apparent only in the 2-year follow-up.
  • Frequency of video game playing, but not TV viewing, was associated with excess weight gain.

Overall conclusion: Indicators of PA and sedentary behavior were independently associated with excess weight gain.

Funding Source:
Government: National Health Research and Development Program (Canada), Quebec Ministry of Health and Social Services
University/Hospital: Régie régionale de la santé et des services sociaux de Montréal-Centre, McGill University, Macdonald Campus of McGill University, (all Canada)
Not-for-profit
0
Reviewer Comments:

Limitations: PA measures were based on self-report.

Quality Criteria Checklist: Primary Research
Relevance Questions
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) N/A
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) N/A
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? N/A
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? N/A
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? N/A
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? N/A
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) N/A
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) N/A
 
Validity Questions
  1. Was the research question clearly stated? Yes
1. Was the research question clearly stated? Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? N/A
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? N/A
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.3. Were the target population and setting specified? Yes
  1.3. Were the target population and setting specified? Yes
  2. Was the selection of study subjects/patients free from bias? Yes
2. Was the selection of study subjects/patients free from bias? Yes
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? Yes
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? Yes
  2.2. Were criteria applied equally to all study groups? N/A
  2.2. Were criteria applied equally to all study groups? N/A
  2.3. Were health, demographics, and other characteristics of subjects described? Yes
  2.3. Were health, demographics, and other characteristics of subjects described? Yes
  2.4. Were the subjects/patients a representative sample of the relevant population? Yes
  2.4. Were the subjects/patients a representative sample of the relevant population? Yes
  3. Were study groups comparable? Yes
3. Were study groups comparable? Yes
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) Yes
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) Yes
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? N/A
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? N/A
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) Yes
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) Yes
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
  4. Was method of handling withdrawals described? Yes
4. Was method of handling withdrawals described? Yes
  4.1. Were follow-up methods described and the same for all groups? Yes
  4.1. Were follow-up methods described and the same for all groups? Yes
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) Yes
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) Yes
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? N/A
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? N/A
  4.4. Were reasons for withdrawals similar across groups? Yes
  4.4. Were reasons for withdrawals similar across groups? Yes
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
  5. Was blinding used to prevent introduction of bias? N/A
5. Was blinding used to prevent introduction of bias? N/A
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? N/A
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? N/A
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) N/A
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) N/A
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results? N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results? N/A
  6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? Yes
6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? Yes
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? N/A
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? N/A
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? N/A
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? N/A
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? Yes
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? Yes
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? Yes
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? Yes
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.6. Were extra or unplanned treatments described? N/A
  6.6. Were extra or unplanned treatments described? N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? N/A
  6.8. In diagnostic study, were details of test administration and replication sufficient? Yes
  6.8. In diagnostic study, were details of test administration and replication sufficient? Yes
  7. Were outcomes clearly defined and the measurements valid and reliable? Yes
7. Were outcomes clearly defined and the measurements valid and reliable? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern? Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern? Yes
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? Yes
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? Yes
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.7. Were the measurements conducted consistently across groups? Yes
  7.7. Were the measurements conducted consistently across groups? Yes
  8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? N/A
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? N/A
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? N/A
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? N/A
  8.6. Was clinical significance as well as statistical significance reported? N/A
  8.6. Was clinical significance as well as statistical significance reported? N/A
  8.7. If negative findings, was a power calculation reported to address type 2 error? Yes
  8.7. If negative findings, was a power calculation reported to address type 2 error? Yes
  9. Are conclusions supported by results with biases and limitations taken into consideration? N/A
9. Are conclusions supported by results with biases and limitations taken into consideration? N/A
  9.1. Is there a discussion of findings? N/A
  9.1. Is there a discussion of findings? N/A
  9.2. Are biases and study limitations identified and discussed? N/A
  9.2. Are biases and study limitations identified and discussed? N/A
  10. Is bias due to study's funding or sponsorship unlikely? Yes
10. Is bias due to study's funding or sponsorship unlikely? Yes
  10.1. Were sources of funding and investigators' affiliations described? N/A
  10.1. Were sources of funding and investigators' affiliations described? N/A
  10.2. Was the study free from apparent conflict of interest? N/A
  10.2. Was the study free from apparent conflict of interest? N/A