DM: Carbohydrates (2007)

Citation:
 
Study Design:
Class:
- Click here for explanation of classification scheme.
Quality Rating:
Research Purpose:

To describe the distribution and determinants of the diet glycemic index calculated from diet records of a diverse group of free-living individuals with type 2 diabetes.

Inclusion Criteria:

Individuals had type 2 diabetes.

Exclusion Criteria:

None specifically mentioned.

Description of Study Protocol:

Recruitment:  subjects were taking part in a Canadian long-term multicenter trial of Acarbose

Study Design:

Nutrition counseling: during the 2 mos run-in period on 1989 Canadian Diabetes Association dietary guidelines.

Subjects completed 3-d diet records on 2 occasions.

Glycemic index (GI) values ascribed to foods according to international averages and unpublished data from the author.

10 3-d diet records were selected at random to estimate the accuracy of GI values (the mean GI for 10 records: 86.7 was similar to that of all subjects, 85.4)

Intervention:  not applicable

Blinding:  not applicable

Statistical Analysis:

  • the distribution of GI values was plotted by histogram with class width of 3 so as to give 10 cells across the range of observed values.
  • the observed distribution was compared with a fitted normal distribution by the chi-square test 
  • comparison of diet GI between sex and treatment groups was done by analysis of variance
  • simple, stepwise linear regression ws performed on a spreadsheet

  

 

Data Collection Summary:

Timing of Measurements: not applicable

Dependent Variables:

  • Diet glycemic index, ascribed to foods according to international averages and unpublished results with estimates made for unknown foods by one of the researchers.
  • The diet GI was calculated by multiplying the GI value of each food by its carbohydrate content expressed as a proportion of the total carbohydrate for the day.  The sum of the resulting values was the diet GI for the day.

Independent Variables:

  • diet composition based on 3 day food records
  • age
  • BMI
  • duration of diabetes

Control Variables:  not specified

 

Description of Actual Data Sample:

Initial N:  Diet records were obtained from 342 of the 354 subjects recruited to the multicenter drug trial

Final N: 342 (202 men and 140 women)

Age: 57.7±9.07

Ethnicity: not specified

Other relevant demographics:  75 treated with diet alone 82 with diet plus metformin, and 87 with diet plus insulin; Duration of diabetes 9.2 ± 6.5 yr

Anthropometrics:  BMI 29.1±4.87

Location: 7 major cities throughout Canada.  Centers were located in Vancouver, Edmonton, Calgary, London, Toronto, Montreal, and Hailifax.

Summary of Results:

Mean dietary intakes:

Kcal 1714  ± 452

Protein, 85.0 + ± 21.7 g 

Fat, 64.8 + ± 24.0 g, 33.6 ± 6.5%

Available Carbohydrate, 202 ± 47.7 g, 45.3 ± 7.2%

Simple sugars, 80.6 ± 30.3 g, 18.2 ± 6.1%

Starch, 122 ± 36.9 g, 27.1 ± 4.9%

Dietary fiber, 17.2 ± 6.4 g

Alcohol, 2.3 ± 8.3 g 

Glycemic index 85.4 ± 4.6

Diet GI values (85.4 ± 4.55, range, 70-97.8) were normally distributed.

Diet GI was inversely associated with intake of simple sugars, whether expressed in grams (r= -0.426), percent of energy (r= -0.446) or percent of carbohydrate (r= -0.453, P<0.001).

By stepwise multiple regression, g carbohydrate and percent of protein were independently related to diet GI. It is unclear why protein is related to GI

Differences in diet GI between men and women and between subjects on different types of diabetes therapy were explained by differences in intake of simple sugars.

Author Conclusion:

We conclude that, in a population of free-living subjects with NIDDM, diet GI values are normally distributed with a mean of ~85+5. Diet GI is inversely associated with simple sugar intake because foods rich in simple sugars, such as milk and fruit, have relatively low GI values.

 The present results show that the strongest determinant of diet GI was intake of simple sugars. This is because foods rich in simple sugars such as milk (GI=46) and fruits (GIs, apple=52, banana = 84, orange = 59) tend to have lower GI values than most common starchy foods such as bread (GI = 100, rice (GI = 83), potatoes (GI = 80-120) and breakfast cereals (GI = 90-130). GI of sucrose is 83, lower than most starch foods.

Funding Source:
Industry:
Miles Canada Inc.
Pharmaceutical/Dietary Supplement Company:
Reviewer Comments:

This study determined the GI of typical dietary intakes from 342 middle-aged subjects with type 2 diabetes mellitus in Canada.

The mean GI was ~85% compared to that of 100% for bread.

Quality Criteria Checklist: Primary Research
Relevance Questions
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) Yes
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) Yes
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? Yes
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? Yes
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? Yes
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? Yes
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) Yes
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) Yes
 
Validity Questions
  1. Was the research question clearly stated? Yes
1. Was the research question clearly stated? Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.3. Were the target population and setting specified? Yes
  1.3. Were the target population and setting specified? Yes
  2. Was the selection of study subjects/patients free from bias? Yes
2. Was the selection of study subjects/patients free from bias? Yes
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? Yes
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? Yes
  2.2. Were criteria applied equally to all study groups? Yes
  2.2. Were criteria applied equally to all study groups? Yes
  2.3. Were health, demographics, and other characteristics of subjects described? Yes
  2.3. Were health, demographics, and other characteristics of subjects described? Yes
  2.4. Were the subjects/patients a representative sample of the relevant population? Yes
  2.4. Were the subjects/patients a representative sample of the relevant population? Yes
  3. Were study groups comparable? N/A
3. Were study groups comparable? N/A
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) N/A
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) N/A
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? N/A
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? N/A
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) N/A
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) N/A
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
  4. Was method of handling withdrawals described? N/A
4. Was method of handling withdrawals described? N/A
  4.1. Were follow-up methods described and the same for all groups? N/A
  4.1. Were follow-up methods described and the same for all groups? N/A
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) N/A
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) N/A
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? N/A
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? N/A
  4.4. Were reasons for withdrawals similar across groups? N/A
  4.4. Were reasons for withdrawals similar across groups? N/A
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
  5. Was blinding used to prevent introduction of bias? N/A
5. Was blinding used to prevent introduction of bias? N/A
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? N/A
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? N/A
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) N/A
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) N/A
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results? N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results? N/A
  6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? N/A
6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? N/A
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? N/A
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? N/A
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? N/A
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? N/A
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? N/A
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? N/A
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? N/A
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? N/A
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.6. Were extra or unplanned treatments described? N/A
  6.6. Were extra or unplanned treatments described? N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? N/A
  6.8. In diagnostic study, were details of test administration and replication sufficient? N/A
  6.8. In diagnostic study, were details of test administration and replication sufficient? N/A
  7. Were outcomes clearly defined and the measurements valid and reliable? Yes
7. Were outcomes clearly defined and the measurements valid and reliable? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern? Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern? Yes
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? N/A
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? N/A
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.7. Were the measurements conducted consistently across groups? N/A
  7.7. Were the measurements conducted consistently across groups? N/A
  8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? N/A
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? N/A
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? Yes
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? Yes
  8.6. Was clinical significance as well as statistical significance reported? Yes
  8.6. Was clinical significance as well as statistical significance reported? Yes
  8.7. If negative findings, was a power calculation reported to address type 2 error? No
  8.7. If negative findings, was a power calculation reported to address type 2 error? No
  9. Are conclusions supported by results with biases and limitations taken into consideration? Yes
9. Are conclusions supported by results with biases and limitations taken into consideration? Yes
  9.1. Is there a discussion of findings? Yes
  9.1. Is there a discussion of findings? Yes
  9.2. Are biases and study limitations identified and discussed? Yes
  9.2. Are biases and study limitations identified and discussed? Yes
  10. Is bias due to study's funding or sponsorship unlikely? Yes
10. Is bias due to study's funding or sponsorship unlikely? Yes
  10.1. Were sources of funding and investigators' affiliations described? Yes
  10.1. Were sources of funding and investigators' affiliations described? Yes
  10.2. Was the study free from apparent conflict of interest? Yes
  10.2. Was the study free from apparent conflict of interest? Yes