This Academy member benefit temporarily has been made public to allow all practitioners access to content that may assist in patient care during the national pandemic response. Click here for information on joining the Academy. 

SCI: Lipid Abnormalities (2007)

Citation:

Midha M, Schmitt JK, Sclater M. Exercise effect with the wheelchair aerobic fitness trainer on conditioning and metabolic function in disabled persons: a pilot study. Arch Phys Med Rehabil. 1999;80(3):258-61.

PubMed ID: 10084432
 
Study Design:
Before-After Study
Class:
D - Click here for explanation of classification scheme.
Quality Rating:
Neutral NEUTRAL: See Quality Criteria Checklist below.
Research Purpose:

Poor physical activity habits in the disabled can negatively impact body composition, insulin sensitivity, serum lipoprotein profiles and risk for chronic disease. Bouts of activity can produce increases in thryoid--stimulating hormones, which could combat the aforementioned changes. The purpose of this study was to determine the effect of weekly training on a wheelchair aerobic fitness trainer (WAFT) on anthropometrics, conditioning and metabolic and endocrine parameters in disabled persons.

Inclusion Criteria:

No explicit inclusion criteria were stated for type of disabled persons included.  Of the 11 subjects, seven were paraplegic, three were quadriplegic, one was a bilateral above-the-knee amputation and one was a cerebrovascular accident patient.

Exclusion Criteria:

Subjects were excluded based on significant cardiovascular or pulmonary disease.  No other exclusion criteria were stated.

Description of Study Protocol:

Recruitment

 The setting was the tertiary-care Veterans Administration medical center; however, no further detail is provided about the source of the sample or recruitment methods.

Design

Before and after design.

Blinding used (if applicable)

 No blinding was used nor necessary.  All participants received training.

Intervention (if applicable)

 Subjects completed a maximal graded exercise test on the wheelchair aerobic fitness trainer to identify workload required to attain 55% to 90% of maximal heart rate (220 beats - age).  Training was based on ACSM guidelines (1991) to complete two to three exercise sessions per week of 20-30 minutes (mean duration and intensity: 22.5 minutes, 177 Watts) over a 10 week period. Workouts began at 20 minutes per session and subjects were encouraged to gradually increase time toward 30 minutes.

Statistical Analysis

Paired samples t-tests were conducted on pre-training and post-training data (alpha = .05).

 

Data Collection Summary:

Timing of Measurements

 All measurements were made prior to the initiation of training and at the end of training.

Laboratory values were measured 48 and 72 hours after an exercise session

and thyroxine were measured .

 

Eight subjects received VO2 max (peak oxygen utilization) testing at an undisclosed time.

Additional measurements taken pre and post that were not described in methodology that are presented in the tables include:

pulse, quadriceps skinfold thickness, abdominal circumference and arm power.

Dependent Variables

  • Body weight , blood pressure, heart rate were measured before training and at 10 weeks.
  • Fasting serum glucose, cholesterol, triglycerides, lipoprotein fractions were measured using a Johnson & Johnson VITROS 950
  • Serum thyroxine and radioactive triiodthyronine uptake (RT3U) was measured by Beckman Access and were used to calculate a free thyroxine index.
  • Skinfold measurements were taken using a Lange skinfold caliper with at least four measurements per site.
  • Body weight, triceps skinfold and mid-arm circumference were measured (not indication of timing of these measurements).   Upper arm fat area (kg/m2) was computed using triceps skinfold and mid-arm circumference.
  • Body mass index was determined by a nomogram. 
  • VO2 max was measured using a Sensormedic 2900 O2 analyzer.

Independent Variables

 Subjects served as there own controls in this pre-post design.

Control Variables

 None reported.

Description of Actual Data Sample:

 

Initial N: 11 (10 males, 1 female).

Attrition (final N): None reported.

Age: 22-58 years (38.3 ± 10.7 SD computed based on data).

Ethnicity: none reported.

Other relevant demographics: none reported.

Anthropometrics only mean values reported for baseline and post-training.

Location: Tertiary-care Veterans Administration medical center in Richmond, VA.

 

Summary of Results:

 

Variables

Pre-training

Mean ± SD

Post-training

Mean ± SD

Statistical Significance of Group Difference

Pulse (beats/min)

93±14

72±14

p=0.02

Peak O2 consumption (n=8)

19±6

24±6

p=0.02

Midarm Circumference (cm)

32±4

33±4

p=0.05

Upper arm fat area (k/m2)

162±93

147±77

p=0.05

Fasting serum cholesterol (md/dL)

185±42

170±32

p=0.04

Free thyroxine index (ug/dL) 8.4±2 9.2±3 p=0.03

 

Other Findings

No significant changes from pre-training to post-training were found for:

systolic or diastolic blood pressure; maximal heart rate; body weight; quadriceps skinfold thickness; abdominal circumference; arm power; fasting serum glucose or triglycerides; HDL cholesterol; cholesterol:HDL ratio; or TSH.

Author Conclusion:

Short duration physical activity, two to three times per week, has the capacity to improve health parameters in disabled persons.  Limited improvements in HDL cholesterol and arm strength were attributed to the submaximal, short duration nature of the exercise bouts.

Funding Source:
Government: McGuire VA Medical Center
Reviewer Comments:

There was an overall lack of detail in the recruitment as well as data collection techniques and timing of measurements.  Otherwise, this is a fairly straight-forward pilot study to explore the benefits of physical.  Adherence data and a higher sample size may result in a greater impact on the study outcomes.

Quality Criteria Checklist: Primary Research
Relevance Questions
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) Yes
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) Yes
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? Yes
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? Yes
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? Yes
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? Yes
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) Yes
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) Yes
 
Validity Questions
  1. Was the research question clearly stated? Yes
1. Was the research question clearly stated? Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.3. Were the target population and setting specified? No
  1.3. Were the target population and setting specified? No
  2. Was the selection of study subjects/patients free from bias? ???
2. Was the selection of study subjects/patients free from bias? ???
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? No
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? No
  2.2. Were criteria applied equally to all study groups? N/A
  2.2. Were criteria applied equally to all study groups? N/A
  2.3. Were health, demographics, and other characteristics of subjects described? No
  2.3. Were health, demographics, and other characteristics of subjects described? No
  2.4. Were the subjects/patients a representative sample of the relevant population? ???
  2.4. Were the subjects/patients a representative sample of the relevant population? ???
  3. Were study groups comparable? Yes
3. Were study groups comparable? Yes
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) N/A
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) N/A
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? N/A
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? N/A
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) Yes
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) Yes
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
  4. Was method of handling withdrawals described? No
4. Was method of handling withdrawals described? No
  4.1. Were follow-up methods described and the same for all groups? ???
  4.1. Were follow-up methods described and the same for all groups? ???
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) ???
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) ???
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? ???
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? ???
  4.4. Were reasons for withdrawals similar across groups? N/A
  4.4. Were reasons for withdrawals similar across groups? N/A
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
  5. Was blinding used to prevent introduction of bias? ???
5. Was blinding used to prevent introduction of bias? ???
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? N/A
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? N/A
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) ???
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) ???
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results? ???
  5.5. In diagnostic study, were test results blinded to patient history and other test results? ???
  6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? N/A
6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? N/A
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? No
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? No
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? N/A
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? N/A
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? Yes
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? Yes
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? No
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? No
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.6. Were extra or unplanned treatments described? N/A
  6.6. Were extra or unplanned treatments described? N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? N/A
  6.8. In diagnostic study, were details of test administration and replication sufficient? N/A
  6.8. In diagnostic study, were details of test administration and replication sufficient? N/A
  7. Were outcomes clearly defined and the measurements valid and reliable? Yes
7. Were outcomes clearly defined and the measurements valid and reliable? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern? N/A
  7.2. Were nutrition measures appropriate to question and outcomes of concern? N/A
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? ???
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? ???
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.7. Were the measurements conducted consistently across groups? Yes
  7.7. Were the measurements conducted consistently across groups? Yes
  8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? ???
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? ???
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? No
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? No
  8.6. Was clinical significance as well as statistical significance reported? No
  8.6. Was clinical significance as well as statistical significance reported? No
  8.7. If negative findings, was a power calculation reported to address type 2 error? No
  8.7. If negative findings, was a power calculation reported to address type 2 error? No
  9. Are conclusions supported by results with biases and limitations taken into consideration? Yes
9. Are conclusions supported by results with biases and limitations taken into consideration? Yes
  9.1. Is there a discussion of findings? Yes
  9.1. Is there a discussion of findings? Yes
  9.2. Are biases and study limitations identified and discussed? Yes
  9.2. Are biases and study limitations identified and discussed? Yes
  10. Is bias due to study's funding or sponsorship unlikely? Yes
10. Is bias due to study's funding or sponsorship unlikely? Yes
  10.1. Were sources of funding and investigators' affiliations described? Yes
  10.1. Were sources of funding and investigators' affiliations described? Yes
  10.2. Was the study free from apparent conflict of interest? Yes
  10.2. Was the study free from apparent conflict of interest? Yes