CI: Supplemental Intravenous Glutamine (2011)

Citation:

Yang DL, Xu JF. Effect of dipeptide of glutamine and alanine on severe traumatic brain injury. Chin J Traumatol. 2007; 10(3): 145-149.

PubMed ID: 17535636
 
Study Design:
Randomized Controlled Trial
Class:
A - Click here for explanation of classification scheme.
Quality Rating:
Neutral NEUTRAL: See Quality Criteria Checklist below.
Research Purpose:

To explore the value of dipeptides (glutamine and alanine) in severe traumatic brain injury.

Inclusion Criteria:

Severe traumatic brain injury patients admitted to neurosurgical intensive care unit.

Exclusion Criteria:

Patients lacking a severe traumatic brain injury.

Description of Study Protocol:

Recruitment

Patients admitted to neurosurgical intensive care unit from September 2003 to September 2005.  

Design

Randomized clinical trial.

Intervention

Injection of 2mg per kg glutamine and alanine in first 24 hours. 

Statistical Analysis 

Paired T-test was used to determine statistical differences between the study group and the control group.

Data Collection Summary:

Timing of Measurements 

September 2003 to September 2005. 

Dependent Variables

  • Length of stay in NICU, fatality rate and GCS score
  • Lab tests reflecting nutritional state
  • Complication rate.

Independent Variables

Dipeptide injection of glutamine and alanine (2mg per kg body weight) in 24 hours at the beginning of basic treatment and extending for two weeks.

Control group

Standard nutritional therapy using TPN per individualized calculations.

Description of Actual Data Sample:
  • Initial N: 46 patients (31  males, 15 females); 67% male, 33% female
  • Attrition (final N): Fatality incidience reports included Group G with five deaths and Group C with nine deaths.
  • Age: Seven to 68 years with an average age of 47±9.6 years
  • Ethnicity: Asian
  • Other relevant demographics: None given; NICU treatment
  • Location: Shanghai, China.
Summary of Results:

 Key Findings

Variable Glutamine and Alanine Group (N=23)

Control Group (N=23)

Statistical Significance of Group Difference

ICU LOS 10±3.5 18±5.6

P<0.05

Overall infection rate

65.2%

95.6%

P<0.05

 

Author Conclusion:
  • Dipeptide of glutamine and alanine could lower the risk of alimentary tract hemorrhage and lung infection, shorten the stay in NICU and lower the mortality in the second week for the patients with severe TBI 
  • Dipeptide (glutamine and alanine) can increase the resisting stress and anti-infection ability of patients with severe TBI, which can also lower the mortality and shorten the NICU stay.
Funding Source:
University/Hospital: Shanghai, China
Reviewer Comments:

The authors did not mention anthropometric data or any demographic data beyond age and sex of sample.

Quality Criteria Checklist: Primary Research
Relevance Questions
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) Yes
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? Yes
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? Yes
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies) Yes
 
Validity Questions
1. Was the research question clearly stated? Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated? Yes
  1.3. Were the target population and setting specified? Yes
2. Was the selection of study subjects/patients free from bias? ???
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? Yes
  2.2. Were criteria applied equally to all study groups? Yes
  2.3. Were health, demographics, and other characteristics of subjects described? No
  2.4. Were the subjects/patients a representative sample of the relevant population? ???
3. Were study groups comparable? Yes
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT) No
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline? ???
  3.3. Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) Yes
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? N/A
  3.5. If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")? N/A
4. Was method of handling withdrawals described? N/A
  4.1. Were follow-up methods described and the same for all groups? N/A
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) N/A
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for? Yes
  4.4. Were reasons for withdrawals similar across groups? N/A
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study? N/A
5. Was blinding used to prevent introduction of bias? No
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate? No
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) No
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? N/A
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status? N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results? N/A
6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? Yes
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied? Yes
  6.2. In observational study, were interventions, study settings, and clinicians/provider described? Yes
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? ???
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured? ???
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described? N/A
  6.6. Were extra or unplanned treatments described? No
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? Yes
  6.8. In diagnostic study, were details of test administration and replication sufficient? N/A
7. Were outcomes clearly defined and the measurements valid and reliable? Yes
  7.1. Were primary and secondary endpoints described and relevant to the question? Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern? Yes
  7.3. Was the period of follow-up long enough for important outcome(s) to occur? ???
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? Yes
  7.5. Was the measurement of effect at an appropriate level of precision? Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes? Yes
  7.7. Were the measurements conducted consistently across groups? Yes
8. Was the statistical analysis appropriate for the study design and type of outcome indicators? Yes
  8.1. Were statistical analyses adequately described and the results reported appropriately? Yes
  8.2. Were correct statistical tests used and assumptions of test not violated? Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals? Yes
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? ???
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? N/A
  8.6. Was clinical significance as well as statistical significance reported? Yes
  8.7. If negative findings, was a power calculation reported to address type 2 error? N/A
9. Are conclusions supported by results with biases and limitations taken into consideration? Yes
  9.1. Is there a discussion of findings? Yes
  9.2. Are biases and study limitations identified and discussed? Yes
10. Is bias due to study's funding or sponsorship unlikely? Yes
  10.1. Were sources of funding and investigators' affiliations described? Yes
  10.2. Was the study free from apparent conflict of interest? Yes