CKD: Nutritional Status: Technical Devices and Anthropometric Measures (2018)
Author and Year:
Flakoll P et al 2004
PubMed ID:
Article Title:
Bioelectrical impedance vs air displacement plethysmography and dual-energy X-ray absorptiometry to determine body composition in patients with end-stage renal disease.
Authors:
Flakoll P, Kent P, Neyra R, Levenhagen D, Chen K, Ikizler T
Journal:
JPEN. Journal of parenteral and enteral nutrition
Year of publication:
2004
Volume:
28
Issue:
1
Page numbers:
13-21
Study Design:
Cross-Sectional Study
Risk of Bias Assessment Rating:
Neutral
Inclusion Criteria:
Not Reported
Exclusion Criteria:
Not Reported
Research Purpose:
The aim of the present study was to compare measurements of body fat using BIA with those using ADP and DXA on patients with ESRD. Thus, a measurement exclusively dependent on body water to estimate body fat will be compared with 2 other methods that do not directly use body water to determine body fat in a population exhibiting unstable fluid status. Furthermore, several equations used in the conversion of BIA measurements to body composition will be compared. Finally, because anthropometric measurements are frequently used under clinical conditions because of their convenience, the techniques to estimate body fat will be compared with anthropometric measurements.
Blinding efforts:
Not Reported
Study Location:
Vanderbilt University Outpatient Dialysis Clinic
Source(s) of Funding:
Government, University/Hospital, Not-for-profit
Please specify names of funders:
Use of the facilities at the General Clinical Research Center (National Institutes of Health grant RR00095) and the Department of Radiology and Radiologic Sciences at the Vanderbilt University Medical Center, National Institutes of Health grants DK45604 and DK62849, FDA grant 000943, National Kidney Foundation Council of Renal Nutrition (P. K. and T. A. I.), and the Clinical Nutrition Research Unit (National Institutes of Health grant DK26657).
Quality Criteria Checklist: Primary Research
|
|||
Relevance Questions | |||
1. | Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies) | Yes | |
2. | Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about? | Yes | |
3. | Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to dieteticspractice? | Yes | |
4. | Is the intervention or procedure feasible? (NA for some epidemiological studies) | Yes | |
Validity Questions | |||
1. | Was the research question clearly stated? | Yes | |
1.1. | Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified? | Yes | |
1.2. | Was (were) the outcome(s) [dependent variable(s)] clearly indicated? | Yes | |
1.3. | Were the target population and setting specified? | Yes | |
2. | Was the selection of study subjects/patients free from bias? | ??? | |
2.1. | Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study? | No | |
2.2. | Were criteria applied equally to all study groups? | ??? | |
2.3. | Were health, demographics, and other characteristics of subjects described? | Yes | |
2.4. | Were the subjects/patients a representative sample of the relevant population? | ??? | |
3. | Were study groups comparable? | ??? | |
3.3. | Were concurrent controls or comparisons used? (Concurrent preferred over historical control or comparison groups.) | Yes | |
3.4. | If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis? | ??? | |
3.5. | If case control study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable.) | N/A | |
4. | Was method of handling withdrawals described? | No | |
4.1. | Were follow-up methods described and the same for all groups? | Yes | |
4.2. | Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.) | Yes | |
4.3. | Were all enrolled subjects/patients (in the original sample) accounted for? | Yes | |
5. | Was blinding used to prevent introduction of bias? | No | |
5.2. | Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.) | No | |
5.3. | In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded? | No | |
6. | Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described? | Yes | |
6.2. | In observational study, were interventions, study settings, and clinicians/provider described? | Yes | |
6.3. | Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect? | Yes | |
6.4. | Was the amount of exposure and, if relevant, subject/patient compliance measured? | Yes | |
6.5. | Were co-interventions (e.g., ancillary treatments, other therapies) described? | N/A | |
6.7. | Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups? | Yes | |
7. | Were outcomes clearly defined and the measurements valid and reliable? | Yes | |
7.1. | Were primary and secondary endpoints described and relevant to the question? | Yes | |
7.2. | Were nutrition measures appropriate to question and outcomes of concern? | Yes | |
7.4. | Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures? | Yes | |
7.5. | Was the measurement of effect at an appropriate level of precision? | N/A | |
7.6. | Were other factors accounted for (measured) that could affect outcomes? | Yes | |
7.7. | Were the measurements conducted consistently across groups? | Yes | |
8. | Was the statistical analysis appropriate for the study design and type of outcome indicators? | Yes | |
8.1. | Were statistical analyses adequately described and the results reported appropriately? | Yes | |
8.2. | Were correct statistical tests used and assumptions of test not violated? | Yes | |
8.3. | Were statistics reported with levels of significance and/or confidence intervals? | Yes | |
8.4. | Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)? | N/A | |
8.5. | Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)? | Yes | |
8.6. | Was clinical significance as well as statistical significance reported? | Yes | |
8.7. | If negative findings, was a power calculation reported to address type 2 error? | N/A | |
9. | Are conclusions supported by results with biases and limitations taken into consideration? | Yes | |
9.1. | Is there a discussion of findings? | Yes | |
9.2. | Are biases and study limitations identified and discussed? | Yes | |
10. | Is bias due to study's funding or sponsorship unlikely? | Yes | |
10.1. | Were sources of funding and investigators' affiliations described? | Yes | |
10.2. | Was the study free from apparent conflict of interest? | Yes | |